London UK 2025
logo

Dates and Venue

29 - 30 April 2026 | Excel London

29 - 30 April 2026 | Excel London

Simulating vital blood transfusion processes with VR in the NHS

Tuesday 17 February 2026

Simulating vital blood transfusion processes with VR in the NHS

Simulating vital blood transfusion processes with VR in the NHS

Crossmatching is a critical process in transfusion laboratories – it ensures that patients receive safe and compatible blood transfusions. Mistakes can have severe, even fatal, consequences. But training scientists to perform this vital test is only getting more difficult.

In a busy NHS, staff shortages, high workloads, and lack of lab space all make it hard to support the kind of 1-on-1 training typically needed to learn how to perform the crossmatch test safely and independently. With experienced staff leaving the profession, even trainers themselves are left with knowledge gaps that are then passed on to trainees.

To try and address these issues, Make Real and NHS Blood and Transplant (NHSBT) developed the Crossmatching VR app. Our goal was to create training that would be as effective as live training sessions – while removing the physical barriers, limitations, risks and expenses, and freeing up time for biomedical scientists (BMSs) to carry out higher-value tasks.

This has been the subject of an extensive and detailed academic study, which has already shown:

  • Comparable (or improved) outcomes vs traditional face-to-face learning
  • Minimum 20 hours of training time saved when delivering group training
  • Ability to train outside of the lab environment, without samples or 1:1 supervision

Crossmatching VR has been recognised with a Gold Award for Best Use of Simulations 2025’s Learning Technologies Awards, and the app is being used with all NHSBT’s new starters in their specialised reference service that provide a referral service for complex transfusion cases from 250+ hospitals in England.

 

Why use virtual reality to train crossmatching?

Mistakes in the crossmatching procedure can be fatal. In 2024, 17.2% of transfusion errors reported in the UK originated in laboratories, with three leading to death and four leading to major morbidity.

It is exactly this kind of procedural, high-stakes, judgement-heavy skill that VR excels at. We had worked with NHSBT on previous VR experiences, focusing on specific lab processes like aseptic techniques. We’d also created a proof-of-concept experience for blood grouping – so, we knew it was a valid use case.

We knew that with a successful VR deployment, learners would no longer require access to live labs, real patient samples, or physical trainers. It would address the practical barriers and provide a real alternative to face-to-face training.

 

Working in Partnership

When the Make Real team began building the app, we worked closely alongside NHSBT to match the experience to the learning outcomes. Learners needed to:

  • Carry out all stages of the crossmatching procedure with no errors
  • Know what they should look for on patient documentation, labels, red cell units
  • Be able to select the correct units for transfusion

There are four key elements to get right in the lab.

  • Sample receipt – Is the sample from the correct patient?
  • Component selection – has the correct type of red cell unit been selected?
  • Testing – have all tests been performed and interpreted correctly?
  • Component labelling – has the unit been labelled with the correct details?

The aim was authentic recreation of each element and step in the crossmatching process. Our learning designers actually visited a transfusion lab to practise crossmatching themselves – helping them to understand not just what happens, but how it feels to carry out the process. This way, we could best decide which steps should be fully interactive or could be shown as a simple animation. Interactions like using a pipette were recreated to be as lifelike as possible, being a key step for this process and many other lab processes.

 

We built three scenarios, each with patients who have different needs for their blood transfusion. These drill into key areas of error, such as getting patient details and specific requirements related to their conditions right, and how these determine the correct red cell unit.

At the end, the red cell units are second-checked by a colleague, replicating what would happen in real life. If an error was made, the colleague explains what went wrong. The patient also explains what impact the error would have on them.

As one learner commented:

 “At the end of each case, once the final decision had been made the patient outcome was shown. It also lets you see the outcome if it was incorrect. When I made the wrong choice, it was explained where I went wrong. This helped me to understand the impact on the patient of even making one small incorrect choice.”

 

YouTube video: https://youtu.be/HUanQA4h0ts

 

We designed the VR carefully to make it a comfortable experience, no matter the user’s familiarity with it: single-hand controls, short 15-minute modules, minimal movement required, voiceover and symbol prompts, and fade-to-black transitions to reduce nausea in first-time users.

 

The impact – benefits for learners AND trainers

The Crossmatching app has been the subject of a doctorate research project into the use of VR for transfusion training – with results showing clear learning benefits.

In an initial pilot study, biomedical and healthcare science undergraduate students with no experience in transfusion labs completed the VR training.

All participants:

  • Demonstrated statistically significant increases in knowledge and perceived practical skills from a mean of 33% to around 54% after completing the crossmatch VR training once.
  • Assessed themselves as better able to perform the tests independently and selecting suitable donor blood.

Following this, a larger scale study was conducted, involving 103 BMS and trainee BMS participants from 43 hospitals and blood centres in England and Wales. These participants were split into an experimental VR group and a control group. And the study showed...

In knowledge assessments, VR is:

  • Comparable to F2F training immediately after training
  • Trending towards increased knowledge retention at 3 months after training

When it comes to practical skills...

  • Perceived practical skills - no statistically significant difference in perceived practical skills after training, demonstrating comparability with F2F
  • Observed practical skills - no statistically significant difference in perceived practical skills after training, demonstrating comparability with F2F
  • Procedural learning - VR group better at 100% recall immediately after training than the control group (59% of control group achieved 100% scores, 89% of VR group achieved 100% scores)

What does that mean?

It means that VR is a viable alternative to face-to-face training, producing similar if not better results. And VR can actually enable training to happen, without the pressures of time and resource shortages.

81% of the VR participants said they’d recommend the training to others, reporting that the simulation was “easy to follow,” “low-pressure,” and “low-stress”, in contrast to the high-pressure, resource-constrained nature of real transfusion labs.

  • “Instructions were clear and simple. Pressure was also ‘off my shoulders’ in VR so I could focus on what I was doing and the science behind the process instead of worrying. The VR made me more confident in what to set up in a real-life scenario.”

On top of the benefits for learners, VR is an excellent tool for trainers themselves. In the control group, half reported negatively about managing to deliver training alongside their usual duties. In the VR group, only 5% reported a negative impact.

 

Delivering value with virtual reality

Traditional crossmatching training requires costly and time-intensive inputs: 

  • Access to real lab environments
  • Physical consumables such as red cell units and reagents
  • One-to-one supervision from experienced scientists
  • Time away from day-to-day clinical duties for both trainees and trainers

The VR simulation overcomes these constraints by offering scalable, on-demand training with no use of physical consumables or lab time. 

And in terms of biomedical scientist's time, VR could be a crucial tool in freeing them up for vital clinical duties. These BMSs are typically Band 7 NHS employees on higher salaries.

In Red Cell Immunohaematology (RCI) labs, setting up standard face-to-face lab training takes around seven hours:

  • Making dummy donor units 
  • Ordering donor samples to match the pre-prepared scenarios
  •  Printing documentation

In face-to-face training in an RCI lab, the training takes 3.5 hours and requires a ratio of one trainer to two learners.

And post-training requires another seven hours:

  • Marking knowledge checks
  • Completing raining documentation
  • Tidying up after training

So, a single in-lab course needs 31.5 hours of a Band 7 biomedical scientist.

Contrast that with the VR training, which requires around two hours of prep, a ratio of one trainer to 10 learners, and six hours of post-training admin. That’s only 11.5 hours – a significant saving of 20 hours which can be spent on other clinical tasks, such as testing real patient samples.

We’re incredibly proud at Make Real to have been involved with this project from the positive learner and trainer feedback...

“This training has emphasised the need for every step to be carried out correctly and why it is important, an error at any step of the way can lead to delayed blood or patient harm.”

“I think this is a great method to implement in our training. Everyone seems excited about this VR training method. The feedback from the participant was very positive.”

...to helping show how VR can support the NHS’s training needs.

If you’d like to read the research yourself, you can find Laura Eastwood’s doctoral thesis here.

 

NHS Blood and Transplant x Make Real: Crossmatching won a Gold Award for the Best use of simulations or virtual environments for learning category at the Learning Technologies Awards 2026. 

 

Laura Eastwood & Natalie Cregan-Evans

NatalieLaura

Explore more news
Loading

Learning Technologies Sponsors

Learning Technologies Partners

Global Event Hub

Learning Technologies

London, UK

Learning Technologies Awards

London, UK

Learning Technologies Autumn Forum

Online

HR Technologies

London, UK

Learning Technologies France

Paris, France

HR Technologies France

Paris, France

OEB Global

Berlin, Germany

Zukunft Personal Europe

Cologne, Germany

Zukunft Personal Nord

Hamburg, Germany

Zukunft Personal Sud

Stuttgart, Germany

DevLearn

Las Vegas, USA

Learning

Orlando, USA

Learning & HR Tech Solutions

Orlando, USA

Join us at Europe's leading workplace learning event